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Implementation of Adaptive Array  Algorithms 
ROBERT SCHREIBER 

Abstract-Some new,  efficient, and numerically  stable  algorithms  for 
the recursive  solution  of  matrix  problems  arising in optimal beam- 
forming  and  direction finding are  described and analyzed.  The  matrix 
problems  considered  are  systems of linear  equations and spectral  de- 
composition. While recursive  solution  procedures  based on the  matrix 
inversion lemma  may  be unstable,  ours  are  stable.  Furthermore,  these 
algorithms  are  extremely  fast. 

I. INTRODUCTION 

I N  this  paper we consider the computational procedures 
to be used in implementing some standard and some 

more recently proposed adaptive methods for direction 
finding and beamforming by sensor  arrays.  We discuss 
the computation of a minimum variance distortionless re- 
sponse (MVDR) beamformer and of several high-resolu- 
tion methods (recently advocated by Bienvenue and Mer- 
moz [l], Owsley [9], and Schmidt [lo]) that are based on 
the spectral decomposition of the signal covariance ma- 
trix. We  are especially concerned with recursive imple- 
mentation of these  procedures. Whenever the signal is 
sampled, an estimate  for  the  covariance matrix is updated 
and  the computed solution (a weight vector) changes in 
response to this new information.  We  shall propose and 
analyze some new, efficient, numerically stable algo- 
rithms. 

The computational procedures we  advocate  take advan- 
tage of this on-line character.  We find methods for up- 
dating the solutions that  are much less expensive than pro- 
cedures that do not make use of the previously computed 
solution. 

For  the MVDR method,  some previous work has been 
done [SI. An update method based on the Sherman-Mor- 
rison-Woodbury formula (which is also known as the ma- 
trix inversion lemma) has been advocated.  We show that 
this procedure can, in one common circumstance, be nu- 
merically unstable. We propose three new, stable meth- 
ods here.  For  the high-resolution methods, we illustrate 
the use of some efficient procedures for updating eigen- 
value and  singular  value  decompositions.  We show how 
to take advantage of the  existence of multiple eigenvalues 
of the signal covariance matrix to further reduce the work. 
We  also show that complex arithmetic can largely be 
avoided. 
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A. Notation 
Let and em'" denote  the spaces of complex n vec- 

tors and m X n matrices.  We use upper  case  italic  letters 
for  matrices,  lower  case  italic  letters  for vectors. The m 
X n matrix A has, by convention,  the  columns [a l ,  a2, 
* * , a,], and the  elements [cui,.i]; the  vector x has  ele- 

ments (t1, * , $ J T ;  for A E CY ' n, A denotes  the  trans- 
pose and A H  the  conjugate transpose of A .  If A E en ' is 
diagonal (cui,j = 0 for i # j ) ,  we denote A by diag(al, I 

A E CY x ,, the  Frobenius norm of A is given by 
. .  . cu,,J. We  denote the r X r identity matrix by 1,. For 

\ 112 

In giving operation counts for  algorithms, we use the 
term operation to mean one complex multiplication and 
one complex addition.  One operation costs about as much 
as  four real multiplications and  four real additions. Note 
that computing x + cuy with real cu costs one-half an  op- 
eration. 

11. AN ON-LINE ALGORITHM FOR ADAPTIVE 
BEAMFORMING 

Let x E G" be  a narrow-band signal received by an array 
of n elements.  Let its covariance matrix be denoted R, 

R =_ E ( x x H ) ,  (1) 

where E( ) denotes expected value. R is Hermitian and, 
if any noise is present,  positive definite. Thus, R has a 
Cholesky factorization 

R = LLH (2) 

where L is lower triangular and has positive, real diagonal 
elements.  The factorization can be computed in n 3 / 6  op- 
erations [ 121. With the  help of the Cholesky factorization, 
we can compute R-'d with n2  operations by solving two 
triangular systems: 

Lu = d ,  

and 

L w = u .  H 

Thus, w = LH-'u = (LLH)- 'd  = R-'d. 
Consider  the  adaptive control of an n-element array. 

The minimum variance distortionless response beam- 
former determines  the output of the array by 

g(d) = w x H ( 3 )  
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where g is an estimate of the  signal arriving from some 
given bearing, d is a  steering  vector  for  the given array 
and bearing, x is the  signal  vector, and 

w = R-'dp(d), (4) 

where p(d)  is an  estimate of the  average power arriving 
from the given bearing, 

p(d) = (dHR-'d)-'. (5 )  

In  practice,  we  have  several bearing angles and corre- 
sponding steering vectors d,, i = 1 ,  2, - - * , m. Let D be 
the n x m matrix of these  vectors 

D = [dl, * * , dm]. 

The principal computational problem is, then,  to find the 
n X m solution matrix 

w = R - ~ D .  (6)  

In  the on-line beamforming  problem, D remains fixed,  but 
R is  often  changed  to  incorporate  a new sample x of the 
signal: 

*R = pR + (1 - ~ ) x x ~  (7) 

where p E (0, 1). We refer  to  such  a  change as a rank-one 
update to R (since  the rank of nH is one) although, if p 
# 1 ,  the  change to R is, in general, of full rank. One must 
find the corresponding updated solution 

*w = ,R-'D. (8) 

The obvious method [8] is based on  the Sherman-Morri- 
son-Woodbury formula for *R-': 

R-' = p-'R-' + P z H  * (9) 

P = ( p  - 1)p-l[(1 - p)(x R x) + PI-' (10) 

where 
H - 1  

and 

z = R-'x. (1  1) 

Thus, if d is  a  typical  column of D, and w is  the corre- 
sponding column of W, then by (6), (8), and (9), 

*w = p-'w + PuHd. W )  

To make use of the method (12) one requires that R-'x be 
computed.  This  can be  done with the  aid of the Cholesky 
factorization of R. Moreover,  Gill,  Golub,  Murray, and 
Saunders have suggested a method for updating the  Cho- 
lesky factorization  after  the rank-one change (7) that uses 
about ($)n2 + O(n) operations [5 ] .  Fast computation of 
this algorithm by parallel processor  arrays was considered 
by Schreiber  and  Tang [ 1 11. 

This  suggests the following  algorithm. 
1) (Initialize.)  Let R = I ,  L = I ,  and W = D. Thus, R 

2) Every time an update (7) is made to R,  
= LLH, and W = R-'D. Compute P from (lo)., 

a)  solve for z = R-'x by solving the two triangular 

b)  update  the Cholesky factor L of R; and 
systems Ly = x and LHz = y ;  

c) for every column w of W and corresponding col- 
umn d of D, 

i) compute 6 : = PzHd;  
ii) compute w : = p-'w + 6z. 

The cost of step 2a) is n2 operations; of step 2b) is 
(5)n2 operations; of step  2ci)  is nm operations; of step 
2cii) is about ($)nrn operations. The alternative  algo- 
rithm, in which the updated Cholesky factorization of R 
is used to solve  for R-'D, costs n2m operations  for solv- 
ing triangular systems and (5)n2 for updating the  factor- 
ization. 

Unfortunately,  the method is unstable. If 0 < p < 1, 
then p-' > 1. Any error  in W is amplified by the  factor 
p-' every time  the  update (12) is  performed.  These  errors 
eventually render the computed solutions W uselessly in- 
accurate. Thus,  correct  solutions  must occasionally be 
calculated directly from D and  the Cholesky factorization 
of R according to (8). Fortunately, in some applications 
one may take p = 1 (so that  the  estimate of R computed 
using (7) is  a  better approximation to  the  true  covariance 
matrix.)  Thus, p-' is only slightly larger  than 1, and  the 
"unstable" update (12) can be used for  quite  some  time. 

In fact,  the  choice p = 1 is  appropriate  for relatively 
stationary. signal environments. And in  this  case, it  may 
also be allowable to avoid updating the weights with every 
new sample.  But,  in  a rapidly changing environment,  one 
would take p substantially smaller  than 1, to allow R to 
change fast  enough.  In  that  case,  the  update (12) would 
be useless,  and  a  stable method would be essential. 

Are there equally efficient, stable methods? By (1 1) and 
(6) 

zHd = xHR-ld 
H = x w. 

Thus, (12) is equivalent to the formula 

*w = p-'w + pvcHw. (13) 

Notice  that w now appears  twice.  Perhaps  the second use 
of w has stabilized  the method? It  has. 

Theorem: The residual does not change when formula 
(13) is used: even when w only approximately satisfies Rw 
= d, the identity d - Rw = d - *R,w holds. 

Proof: It suffices to show that *R,w = Rw. By direct 
computation 

*R,w = ( p R  + (1 - ~ ) x x ~ ) ( ~ - ' w  + p a H w )  

= RW + X X ~ W [ / ~ ( ~  + (1 - p)xHz) + (1 - p)p-'] 

= Rw 

since ~ ( p  + (1 - p)xHz) = ( p  - 1)p-l. 
This  shows  that  the  error  is not amplified by (13). A 

similar  analysis  can  be  done  for  the method (12). It shows 
that the residual can  increase by a  scalar multiple of x ,  
whose length is proportional  to (x Hw - z H d ) .  

An even more stable procedure can be  devised.  From 
(12) it follows that 

*w - w E span {w ,  z>.  ( 14) 
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Fig. 1.  Computation of a,. 

All update procedures seek in some way to find the  linear 
combination of w and z that, when added to w, gives ,w. 
Among the many possible methods are  a group of conju- 
gate direction procedures that are especially desirable in 
that they make almost no assumptions other than (14) and 
use the available  data to choose  the coefficients of w and 
z in the  linear  combination. In these  methods,  one chooses 
an orthogonal basis for  the span of w and z ,  then takes a 
step from w in the direction of one of the basis vectors, 
going to the precise point in that direction closest to *w. 
Then  another  step,  in  the direction of the  other basis vec- 
tor, produces *w. The various possible algorithms differ 
in the  choice of basis and the innerproduct used. 

The following procedure  is computationally conve- 
nient. Define z = ,R-'x. Note  that z is a  scalar multiple 
of R-'x. Choose y so that z and z1 = w - yz are *R- 
orthogonal.  (Two vectors u and u are ,R-orthogonal if u H  
,Ru = 0.) Starting from w, take  a  step a l z l  so that wI 
= w + a l z l  is as close  as possible to ,w with respect to 
the ,R-norm. (The  square of the ,R-norm of a  vector u is 
given by  uH,Ru.) Then  take  a  step azz so that wz = w1 
+ azz is as close as possible to *w. Now ,w = wz is  the 
updated solution. 

It is well known [6] that if Rw = d exactly then, except 
for rounding errors, wz exactly equals *w: On the  other 
hand,  suppose that w = R-'d + e,  where e is the  current 
error in w. We can write e = e l  + e2, where el E span 
(w, z )  and e2 is ,R-orthogonal to both w and z .  Then  after 
application of the two conjugate  direction steps as de- 
scribed above, we will obtain *w = *R-'d + e2. In other 
words, the component of the  error  that  lies in the span of 
w and z will have been annihilated. 

Computation of the  step lengths in a conjugate direction 
method usually involves computing dot products.  In  this 
case,  however, computation of a1 can be greatly simpli- 
fied  by some  geometric insight-see Fig. 1. By (12), *w 
- p-l w is a  scalar multiple of z .  Moreover, w1 = (1 + 
a l ) w  + aIyz .  Thus, ,w - w1 is a  scalar multiple of z if 
*w - (1 f a l ) w  is.  Thus, we should take a1 = p-' - 
1.  

Of course,  the computed solution w does not exactly 
satisfy (12). So we should really compute cy1 by requiring 

that *w - w1 be ,R-orthogonal to zl. But  we would need 
to-compute  a matrix-vector, product to  be  able to do this 
without error.  That would raise the cost of the method 
from O(n) to O(n2).  In  fact, our procedure is equivalent 
.to replacing the product Rw by the  vector d in  the inner- 
product zYRw. Let r = Rw - d. The  error we make i s  
therefore z r r .  Now z1  is orthogonal to x. So the  error will 
be rather small if r is  close to the span of x. In view of 
the fact that Y is  a residual and R  is given by ( l) ,  it is 
likely that this is so. 

The method is  as  follows. 
Algorithm (Conjugate Direction): Given the Cholesky 

factor  L of R, a new signal sample x ,  the current computed 
solution W = R-'D, and p ,  

1) update the Cholesky factor; now ,R = ,L,LH; 
2) solve ( L ~ ~ 1 . z  = x; 
3) compute z x (which is  real); and 
4) for every column w of Wand corresponding column 

* '"H 

d of D, 
a)  compute xHw; 
b) compute zHd; 
c) compute y : = -xHw/z H x ;  

d) compute z1 : = w + yz; 
e)  compute crl := p-'  - 1; 
f )  compute w1 : = w + a1 zl ;  
g) compute az : = ( z  Hd - xHw)/zHx; 
h) compute w2 : = w 1  + a2z; 
i) stop: wz is the computed solution to ,R,w = d. 

Recall that computing x + ay with complex x, y ,  and 
real a costs oneLhalf an  operation.  Thus,  this conjugate 
direction procedure costs ($)nz  + (5)nm operations.  For 
m >> n it is slightly less than twice as costly as the meth- 
ods (12) and (13). In view of the experimental results 
given below,  it does appear to be more accurate than (1 3) 
in some cases. But its superiority is not uniform; it de- 
pends on u2 and p.  

A .  Experimental Tests 
We have verified our  claims by an  experiment. Vectors 

x = (1, 2,  3, 4, 5 ,  6)T + s were generated, where s had 
random, independent, normally distributed components of 
mean zero and variance u2. We took d = (1, 1, 1, 1, I ,  
l)T and initially R = 1 and w = d. 

We then used the three methods discussed above for 
100 updates. Let denote the solution vector given by 
the method (12), w(*) the solution given by the stable  for- 
mula (13), and the solution given by the conjugate 
direction formulas. At each step  we updated the Cholesky 
factorization of R by computing 

where Q is the product of n plane rotations. We give four 
error statistics below. The first is  a measure of the accu- 
racy of the updated Cholesky factor L, 

ER E IIR - LLTI/F/IIRIIF. 
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TABLE I 
RELATIVE ERRORS AFTER 100 UPDATES 

p = 0.8 p = 0.9 p = 0.99 
~~ ~~ ~ 

2 = 100 
E ,  = 0.197(-6) . ER 1 0.501(-6) ER ='0.219(-5) 
E ,  = 0.408(+3) El = 0.172(-1) E ,  = 0.144(-4) 
E2 = 0.448(-5) E2 = 0.184(-5) E2 7 0.761(-5) 
E3 = 0.840(-6) E3 = 0.252(-6) E3 = 0.412(-6) 

uz = 10-2 
ER = 0.224(-6) ER = 0.307(-6) E R  = 0.818(-6) 
E ,  = 0.284(+4) El = 0.365(-1) E ,  = 0.129(  -4) 
Ez = 0.467(-5) E2 = 0.955(-5) E2 = 0.720(-5) 
E3 = 0.850(-5) E3 = 0.240(-5) E3 = 0.702(-6) 
= 10-6 

E R  = 0.206(-6) ER = 0.677(-6) ER = 0.210(-5) 
E ,  = 0.990(+5) E ,  = 0.709(+0) El = 0.113(-4) 
E2 = 0.159(-2) E2 = 0.344(-3) E2 = 0.256(-4) 
E3 = 0.402(-2) E3 = 0.872(-4) E3 = 0.244(-4) 

A theoretical analysis of this procedure is given in Section 
11-B below.  Also,  for j = 1, 2, 3, we  give a measure of 
the  error  in  the updated solution w(j), 

E.  k \(,(A - 
J -  (LLT)-'dII/\I(LLT)-'d(l. 

We took p = 0.8, 0.9, and 0.99 and o2 = lo2, loT2, and 
lop6. The results were essentially unchanged for u2 
greater than lo2. In  Table I we show the  errors  in  the 
format 

ER 

E2 

E3 

for  each  pair ( p ,  u2) .  The notation 0.123(-4) means 
0.123 X All computations were done in single pre- 
cision on a VAX. 

Note that the  conjugate  direction method (method 3) is 
distinctly more  accurate in those  cases where high accu- 
racy is useful: low signal-to-noise ratio, which tends to 
make R well  conditioned, and p = 1, so that R is accu- 
rately estimated.  Three  such  cases  occur in the upper- 
right-hand corner of Table I. In these  cases, 'the conjugate 
direction method is ten  times more accurate than the sta- 
ble  update method that uses (13). 

B. Another  Stable Method 
We now discuss  a third stable updating method that dif- 

fers  in  two ways from those already considered.  It avoids 
explicitly forming w; and  it  can  be viewed as  an extension 
of the process for updating the Cholesky factor L-a pro- 
cess that  we  shall  describe  more fully in  this  section. 

From (2) and (5)  we  have  that 

(p(d))-' = dHR-'d 

= U H U  (15) 

where u is  the solution  to  the  triangular  linear system 

Lu = d. 

And from (2) , (4), and (3) we  have  that 

g(d) = wHx 

= dHR--'xp(d) 

,= <UHY> p ( 4  (17) 
*where y is the solution to the  triangular  linear system 

Ly = x. (18) 

If we  are willing to  solve  the system (18) at a  cost of 
n * operations for every new signal x (and if there  are many 
bearings d, this  is  reasonable), then we may use (17) to 
compute g(d). Thus,  we no longer need the weight vector 
w, but  rather  the  vector u and  the  power  estimate p .  We 
now give a  stable method for updating u and p after  the 
change (7). This new algorithm is especially convenient 
in that it can be incorporated into  the process of updating 
the Cholesky factor  L of R .  The systolic array devised by 
Schreiber and Tang [ll] can  be used to perform the nec- 
essary ,additional computations. 

By (7), we seek the Cholesky factor *L of 

T p  

where y = (1 - P)"~x. Let Q be  an n + 1 X n + 1 
orthogonal matrix such that 

where *L is lower  triangular with positive real diagonal. 
It is .easy to  see  that Q can be obtained as  the  product of 
n plane rotations. Now , clearly, 

*R = TQQHTH 

= L LH * *  
so *L is the Cholesky factor of *R. 

for  example, if 
This method is very stable. If there is some  error in L, 

LLH = R + E 

where E is an  error  matrix,  then by (7) and  (19), 

+L,L~ = T Q Q ~ T ~  

= T T ~  

= p H  + p ~ ~ H  

= * R  t pE.  

Since p < 1, the  error is reduced.  In  this  sense, this 
method of updating the Cholesky factor is self-correcting. 
It was used in  the  experiments of the previous section, 
which show that it is  very  accurate.  It can, therefore, be 
strongly recommended. 

Now let d be a given steering vector,  let p = p(d)  be 
the corresponding power  estimate, and let u = u(d) = 
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L-ld be the corresponding solution to (16). Apply the ro- 
tations used in finding *L to obtain 

[O, P u IQ  = [z, *uH1.  (20) -1/2 H 

Now  it follows, by (19) and (20), that 

= [;-1/2J 

- - *L*v, 
so that *u is the updated solution to (16). 

that Lv is not exactly equal to d, but that 
To show that (20) is both correct and stable,  we  assume 

L u = d + r  

where r is  a residual vector. But  by (19) and (20), 

d + r = L u  

= *L*u, 
so that * u  satisfies (16) as well as did u .  This is therefore 
a  stable update method. 

We now consider  an efficient update formula for the 
power estimate p .  From (20) it follows that 

= + *vH*u 

= 1612 + *p-l, 

so that the updated power  estimate * p  
Unfortunately, this last process 1s 

that 

p- ’  = uHu + E 

can be obtained. 
unstable. Suppose 

where E is the  error in p - I .  Then we have that 

* p  = [p-l(uHu + E )  - p I 2 ] - l ,  

But  we  know that 1612 + *uH*u = p u u exactly,  since 
(20) holds and QHQ = 1. Thus, 

- 1  H 

* p  = ( *u  *u + p - b - ’  H 

and 
- 1 -  H 

* p  - *u  *u  + p-%.  

Since p-l > 1, this approach is unstable, and * p  should 

be computed as * u  H * ~ .  

This procedure requires ( ; )n2 operations for  the  Cho- 
lesky update, ({)nm operations for updating * u  using (20), 
and (4)nm operations  for recomputing * p .  

111. METHODS FOR UPDATING THE SPECTRAL 
DECOMPOSITION 

A number of modern, high-resolution methods make use 
of the  spectral decomposition of R [I],  [9], [ 101 : 

R = M U H  (2 1) 

where A = diag ( X 1 ,  * * , X,) is the matrix of eigenval- 
ues of R, ordered so that 

X1 1 X, I - * I X,. 
Here M = [m,, - , m,] where mi is a normalized ei- 
genvector corresponding to Xi. Note that A4 is unitary ( M H  
= M-’).  We shall be concerned,  therefore, with updating 
the decomposition (21) after  a rank-one change (7) to R. 

In  practice,  one uses an  estimate of R that is the product 
X H X ,  where X is a matrix whose rows are (weighted) sam- 
ples of x. Therefore,  the eigenvalues and eigenvectors of 
the  estimate  are  the squared singular values and right sin- 
gular vectors of X .  Periodically,  a new observation of x 
is made and is appended to X as a new row. Thus, the 
problem of updating the spectral decomposition (21) is 
mathematically equivalent to that of updating the singular 
values and right singular vectors of X when a row  is ap- 
pended. 

Bunch and Nielsen recommend that to update the sin- 
gular value decomposition of X when a row is  added, one 
should update the corresponding spectral decomposition 
of R after  a rank-one change [2]. This can obscure the 
small singular values of X :  a  singular value of size J E  
relative to the largest singular value becomes an eigen- 
value of relative size E .  If E is on the  order of the machine 
precision, then this small eigenvalue may become zero. 
In some methods, these eigenvalues play an important role 
191; in others they do not [I]-only the eigenvectors or 
rather certain of the invariant subspaces do. When accu- 
rate detedination of the small eigenvalues is  necessary, 
the  singular  value approach is to be recommended. 

We shall only consider updating the spectral decom- 
position (21).  We  derive  two simplifications. First,  we 
show that even when the  signals  are complex vectors, the 
bulk of the work in updating the decomposition consists 
in computing the spectral decomposition of a real sym- 
metric matrix S. It has already been noted [7] that when 
the number of actual signal sources (including undesired 
sources), say, s, is less than the number of sensors in the 
array n ,  then we can work with an s + 1 X s + 1 matrix 
SI.  Moreover, S is the sum of a diagonal matrix and  a 
matrix of rank one.  Bunch, Nielsen, and Sorensen 131 give 
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a  stable algorithm for finding the  eigenvalues  and  eigen- 
vectors of such  a matrix in O(s2)  operations. 

All the  observations  and methods proposed here have 
analogs for  the  SVD.  In  particular, Businger [4] has given 
a method that  takes  quadratic  time  for updating the  SVD 
when a row is appended to the matrix. But the methods 
advocated in  this  section, including the  eigenvalue updat- 
ing algorithm,  are  all amenable to computation by systolic 
arrays,  and  the  time  for an update can be reduced in this 
way to O(n). Part of Businger's method (the QR iteration 
for  a bidiagonal matrix) is  not. 

Observe that, by (7) and (21), 

*R = M [  p A  + (1 - p ) z H ] M H ,  

where Mz = x .  Let 

S p A  + (1 - p ) z H  

have the. spectral decomposition 

s = T J T ~ ,  (22) 

and let 

*M = MT; (23) 

then 

*R = *M.&,MH 

is the desired spectral  decomposition.  Thus,  the spectral 
decomposition (22)  of the sum of a diagonal matrix and a 
matrix of rank one is needed. 

We now show that S can be made real. Let w E R" be 
given by w = (ol, - * * , a,), where oj = 15 1 .  Then 

w = DHz 

where D = diag ( t l / w l ,  * * , l,/w,). Note that DD = 
DHD = l,, i.e., D is  unitary. Now 

w = DHz 

= D M x  

= (MD)Hx. 

H H  

The  columns of MD are normalized eigenvectors of R. If 
we  use  them in place of the  columns of M ,  we  have that 

S = /.LA + (1 - ~ ) w w ~  

which is real and  symmetric. So we will assume in the 
following that M has been replaced by MD. 

When R has repeated eigenvalues,  there is more that 
can be  done [3]. And if x is formed from s directional 
signals and spatially homogeneous,  additive noise of 
power a*, then the  eigenvalues of R satisfy 

X, > X,+] = X,+, = '  * * = X, = u2. (24) 

(The  space N = span {m, + * , m,> is called the noise 
subspace.  While R determines N ,  any orthonormal basis 
for N can serve  as  the  last n - s columns of M.) To  take 
advantage of the repeated eigenvalue,  let A I  = diag ( X 1 ,  
. . . ,  X , + l ) a n d A 2 = d i a g ( X s + 2 , . . .  , X n ) .  It is possible 
to choose  the  last n - s columns of M so as  to make 3;. + 

- - . . .  = J;, = 0. If this is  done, then 

s o  
= !,' p A ]  

where SI = pAl + (1 - p ) z l z ~  and z1 = (cl, * , 
3;. + Now, given the  spectral  decomposition 

SI = T?, 

we have  that 

is the spectral decomposition of S. This  has been observed 
in previous work [7 ] .  ' 

Let us be specific about  the  choice of m, + 1,  - - 9 mn. 
Since z = MHx we  have 

s. I = m i  x, 1 I i I s. H 

We must first compute these  values. Now we  let 

Thus, m, + is the normalized orthogonal projection of x 
on N .  Now add additional vectors mj, j = s + 2 ,  e ,  n ,  
until an orthonormal basis for N is obtained.  This makes 
sj = Ofor j  = s + 2, * , n.  In  fact, it is not necessary 
to construct m, + 2,  - - , m,. (If it were, they could be 
taken as  the  columns of a certain Householder matrix [3] .) 

Note that the  number of eigenvalues (of the  estimated 
covariance matrix) greater  than u2 can  increase by 1 every 
time we update. On the  other  hand,  the  number of eigen- 
values of R greater than u z  is determined by the number 
of linearly independent signals hitting the  array.  The up- 
dating (7) moves one of the  eigenvalues o2 to  the  right, 
but the remainder move  to  the  left, reduced by the  factor 
p. In the equilibrium state of this process there  are s ei- 
genvalues greater  than u2 and  a  cluster of n - s near u 2 . 
This is not completely satisfactory. 

Karasalo, Goetherstrom,  and Westerlin suggest an at- 
tractive method that  can  be used if we  have  an a priori 
upperbound s on  the number of signals [7] .  They replace 
the new matrix ,R by its closest approximation by a  ma- 
trix of the  form A + u2Z, where rank(A) = s. They show 
that 

S 

and that the new noise level  is 

*u 2 = [ (n  - s - l )u2  + *Xs+l]/(n - s). 

To compute  the  eigenvectors of *R, note  that 

.M = MT 
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where M1 = [m,, * , ms + l]. Because T is real, this 
multiplication costs n(s + 1 ) ~ / 2  operations. 

How much more costly is it to recompute (21) every 
step? Direct computation of a Hermitian spectral decom- 
position requires approximately 5n + ~ ( n  2, operations. 
The work required by the method developed here is 

1) form z1 at  cost n(s + 1) operations; 
2) compute  the  spectral decomposition of S ,  at cost 

3) compute $4 = M1 Tat cost (i)(s + 1)2n operations. 
The net cost is therefore ($)n(s + 1)2 + O(ns + s2) 

operations. The relative expense of the new scheme  drops 
very rapidly as nls increases from 1 ,  and ‘is never more 
than 23 percent of the  cost of a full spectral decomposi- 
tion. 

Additional computational savings are possible. Let us 
consider  the methods proposed by Owsley [9], which are 
typical.  These methods all  seek to estimate  the power of 
the signal hitting the array at  a  given  angle by 

g(d) = wHd (26) 
where d is a steering vector  for  the given array and  angle 
and 

O(s2) operations;  and 

S 

w = mjP(Xj)mrd (27) 

where P( X )  is real valued. Various choices  for p can be 
made that succeed in suppressing the effect of noise and 
enhancing the resolution of the method. 

In computing the output power g(d),  we can do better 
than to use  the definition (26) directly. We can instead 
use the relations (25), (26), and (27) to reduce the cost 
from n 2  operations to (s + 1)2/2 operations for each vec- 
tor d. To  be specific, let 

c = MHd, 

j =  1 

and 
*c = *M d. 

Denote  the  elements of these vectors by c = (71, - - - , 
Y n )  and *c = (*TI, - * 

yS+ and *c1 = ( * ~ 1 ,  * * 7 *Ys + 1lT. Then 

H (28) 

T , *Y,J~.  Let c1 = (yl, - - - , 

and 
S + 1  

*g = J =  .X 1 P(*hj)I*Yj12. (29) 

To compute *g, we need only update c,, then use (29). 
But  by (25) and (28) 

*c = ,MHd 

= THMHd 

= THc 

TABLE I1 
OPERATION  COUNTS AND STABILITY OF THE BEAMFORMING  ALGORITHMS 

Method cost Stability 

Section I1 
Nonrecursive  solution  of (4) n2m + nm + (3/2)n 
Matrix  inverse  lemma: 

n.a. 

Stabilized  matrix  inversion: 

Conjugate  direction:  (1/2)n[5n + 9m] + 
Section 11-B 
Updating  the  Cholesky 

(10)-(11)-(12) (5/2)n[n + m] - 

(10)-(11)-(13)  (5/2)n[n + m] 0 

factor L using  orthogonal 
transformations: (19) (3/2)n2 + 
using the same  orthogonal 
transformations  (20): 3nm + 
transformations to update 
P :  m 

Updating  the solution u 

Using  the  orthogonal 

- 
Recomputing p = u H u :  nm n.a. 

Key n.a.  stability is not an  issue  for  nonrecursive  methods; 
- the  method is unstable:  errors  are  amplified by every 

0 the  method is stable:  errors  are  neither  amplified nor 
step; 

damped; 

step; 
+ the  method is stable:  errors  are  damped by every 

so that 

* ~ 1  = TI ~ 1 .  
H 

(30) 
Thus, from (29) and (30), we can compute g with only (s 
+ 1)2/2 operations for  each  vector d. 

IV. CONCLUSIONS 
We  have given three numerically stable  and computa- 

tionally efficient procedures for adaptive beamforming that 
improve,  either in speed or accuracy,  on known proce- 
dures.  These procedures make methods based on the in- 
verse of the signal covariance matrix much more practical 
for real-time use. This is especially true  for  large sensor 
arrays,  since the dominant cost of these procedures grows 
only linearly with the number of array elements (in this 
respect they are  like  the LMS method). Straightforward 
use of the matrix inverse or a  triangular factorization in- 
curs quadratic cost. 

For methods based on a spectral decomposition of the 
signal covariance matrix, we have obtained a similar 
economy.  The resulting rather dramatic reduction in cost 
makes these  methods,  too, more practical for real-time 
use. 

To  summarize the algorithms recommended,  we  give 
their operation counts and stability properties. In Table 
11, we  give the results for  the beamforming algorithms 
discussed in Section 11. In Table 111, we give  the results 
for updating the  spectral decomposition discussed in Sec- 
tion 111. 

We have not made an issue of stability of the spectral 
decomposition methods. Because no factor of p- l  occurs 
in the methods,  there is no reason to suppose  that insta- 
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TABLE I11 
OPERATION  COUNTS OF ALGORITHMS FOR THE SPECTRAL DECOMPOSITION 

Method cost 

Section I11 
Full  recomputation  of  the 

decomposition  (21) 5n3 + O(n2) 
Use of the  Bunch-Neilsen- 

Sorensen  method  (21)-(22) n3 + O(n2) 
Exploiting  repeated  eigenvalues 

(24)  when  there  are s < n 
signals (1/2)s2n + O(ns + n 2 )  

Recomputing g(d )  using  the 
definition  (26),  when  there  are m 
different  direction  vectors d mns 

Use  of the  recursive  method  (29)- 
(30) to compute g(d )  ( 1 /2)ms 

bility of the  type  encountered  in  the first beamforming 
method of Section I1 will occur.  Moreover,  Bunch, Neil- 
sen, and Sorensen [3] and  Karasalo,  Goetherstrom,  and 
Westerlin [7], [ 131 give  substantial experimental evidence 
for  the stability of some fast update methods for  the spec- 
tral decomposition. 
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